Some Application of Laser-Compton Scattering from Intermediate Energy Electron Beams

K. Chouffani

Idaho Accelerator Center, Idaho State University, Pocatello,

ID 83209.

Laser-Compton Scattering (LCS)

- Interaction of high-energy electron with photon
 ⇒ electron scatters low energy photon to higher
 energy at the expense of the electron kinetic
 energy.
- Similar to channeling/Undulator radiation
- Emission of highly directed (direction of e- beam), mono-energetic, and tunable X-ray beams with divergence on the order of 1/γ.

• Compton x-ray energy (from energy momentum conservation):

$$E_{\gamma} \approx \frac{E_L(1+\beta\cos\alpha)}{1-\beta\cos\theta}.$$

- E_{γ} = x-ray energy, E_{L} = Laser photon energy, E_{B} = Electron beam total energy.
- For collision geometries were $\alpha \approx 0$ and for emission angles close to the electron beam direction:

$$E_{\gamma} \approx E_M / (1 + \gamma^2 \theta^2).$$

• Where $E_M = 4\gamma^2 E_L$ is the maximum energy generated in the forward direction for a head-on collision (Highest gain in energy, twice Doppler shifted).

LCS Spectrum

Laser photon energy in e- frame $\langle mc^2 == \rangle$ motion of e- is non-relativistic (Thomson scattering). Energy of incoming photon = energy of scattered photon in rest frame

Rest frame differential cross section (for an incident linearly polarized plane wave):

 $\frac{d\sigma}{d\Omega'} = r_0^2 \sum \left| \vec{\varepsilon}_l \cdot \vec{\varepsilon}_{\gamma} \right|^2 = r_0^2 (\cos^2\theta' \cos^2\varphi' + \sin^2\varphi')$ After transformation to laboratory frame (laser polarization along x axis)

$$\frac{d\sigma}{d\Omega} = r_0^2 \frac{1-\beta^2}{(1-\beta\cos\theta)^2} \left(\cos^2\varphi \frac{(\cos\theta-\beta)^2}{(1-\beta\cos\theta)^2} + \sin^2\varphi\right)$$

If laser pulse length much shorter than Rayleigh range and e- beam envelope function greater than e- pulse length, transverse rms widths considered independent of longitudinal coordinate and $\sin \alpha \approx$ α (laser propagates in the *y*-*z* plane) :

$$L = \frac{N_e N_L (1+\beta)}{2 \pi \alpha c \sigma_\tau \sqrt{x_\sigma^2 + \sigma_w^2}} \exp(-\tau^2 / 2\sigma_\tau^2),$$

$$\sigma_\tau = \frac{((1+\beta)/\alpha c)}{\sqrt{(\alpha/(1+\beta))^2(z_\sigma^2 + \sigma_L^2) + (y_\sigma^2 + \sigma_w^2)^2}}$$

 τ : delay between laser and electron beam For $\alpha = 0$

$$L = N_e N_L / 2\pi \sqrt{x_\sigma^2 + \sigma_w^2} \sqrt{y_\sigma^2 + \sigma_w^2}$$

Number of LCS X-rays/burst:

 $N_{LCS} = L \sigma_{\Omega}(\sigma_x, \sigma_y), \sigma_{\Omega} =$ Cross section within cone of solid angle Ω .

LCS x-ray energy and energy spread (FWHM) depend on

- Laser frequency bandwidth.
- Electron beam energy and energy deviation.
- e- beam angular spread.
- Electron beam direction.
- Finite detector collimation.
- Finite interaction length.

Potential applications of LCS

- LCS x-ray pulse durations:
- 180° geometry: $\tau_x \approx \tau_e$
- 90° geometry: $\tau_x =$ transit time
- •90° LCS geometry: scanning laser across ebeam spot size (nm range).
- Electron beam emittance, energy, energy spread and direction.

Spectral bandwidth vs collimator radius

LCS energy and FWHM dependence on beam divergence σ_x and σ_y for scans along x-direction (laser electric field)

IAC L-band LINAC Layout

Electron beam and laser parameters (LCS-Experiment) B-Line

- Electron beam:
- Beam energy:
 5-44 MeV
- Pulse length: 50 ps
- Charge/bunch up to 10 nC.
- Typical bunch charge= 0.35 nC
- Rep. Rate = 60 HZ

- <u>YAG-Laser:</u>
- Fundamental
 - $\lambda_1 = 1064 \text{ nm} + \text{second},$
 - third and fourth harmonic
- Pulse length = 250 ps
- $E_1 = 1$ J/pulse
- $E_2 = 500 \text{ mJ/pulse}$
- $E_4 = 33 \text{ mJ/pulse}$
- Rep. Rate = 60 HZ

- Laser-beam line angle: $\alpha \cong 2.2$ mrad.
- Solid angle: $d\Omega_{\gamma} \cong 0.2 \ \mu sr$.
- 1064 nm-Pol: π , 532 nm-Pol: σ , 266 nm-Pol: π
- Seed laser phase locked to Linac 108 MhZ clock.

```
Jitter e-beam and laser \cong 1 ps
```

Laser Room (4 GW, 60 Hz, 250 ps Nd:YAG)

Optics room: Prior to injecting laser to interaction area

Inside LINAC room

e- beam-laser pulses temporal overlap: a-Discreet jumps *i.e.* 9.26 ns b-Seed laser phase *i.e.* 4.6 ns c-Translator *i.e.* 9.26 ns (2x1.7 m)

Delay between laser and e- beam pulses

Eile	<u>E</u> dit ⊻ert	H <u>o</u> rz/Acq	∏rig	<u>D</u> isplay	<u>C</u> ursor	Mea <u>s</u>	M <u>a</u> sk	Math	App	MyScope	Utilities	Help	<u>B</u> utton					
Tek Stopped 36437 Acqs 11 Apr 08 11:04:0															1:04:01			
	: +													: : :				· · ·
																		2.44 2.44
																		N.
3 pt	A Haleman Art	Mar Polyage A A M	inter an	-ind	shy fismin	And south of the second	Stand Part	- Mind	a start	-	-	Madar	ph. difen		AND DAY	-	with the	M
				h														
4	Anternation	le Wares	M. W	104	***	ANNA	WA HAVE	Nij yed	-ip-ur	The second	La Prise	معظيهما	Walt and	President and	Leu Way	and the second	al we	and when we
0.00 				R.A.														
	ostrina <mark>strina</mark>		- 8	87 18 - S														
	1		12															
	- -	 -			····	···· [···· [··											········	
1			1															
	520 GL 20 GL			20132-2														
-	T																	1
	- B																	() ()
200	230 01 3 1 91			50 85 5														
	1																	
A	- X	1		्र २३ - ३					9999 1									
	hand	- ANARAN P	*	-	Like La		N		Lan La	يراب الماري			and the		and a la	1.6.6	8	1
2					P. C. STREET	. an a da		a la la secon	1 4410	-Abit ad per	Territory 1	New Years		No. Association of the	ومرامي	And which		No. or other
				_			_ii								\sim			
	$C_2 = 10.0 \text{mV} \Omega$												20	20.0ns/div				
	C4 10	$0 \text{mV} \Omega$														C2 /	23.0mV	ps/pr
L.				J														
G		D 1 100	0.000		05051-	m: 10	1 220	M-104	70									
U	C2 C3	Dely 180	.9ns	μ:180.	95251n	m:-10).23h	M: 181	.7n	0.36.31p								

Rms spot size at interaction e⁻ beam (depends on bunch charge): $x_{\sigma} = 1.95 \pm 0.02 \text{ mm}$ $y_{\sigma} = 0.625 \pm 0.004 \text{ mm}$ Laser (depends on optics and wavelength) $x_{\sigma} = 82.6 \pm 0.1 \ \mu m$ $y_{\sigma} = 154.3 \pm 0.4 \ \mu m$

$$τ_e = 50 \text{ ps}, τ_L = 250 \text{ ps } Q = 0.35 \text{ nC}, \text{ laser}, E_L = 50 \text{ mJ},
α = 2.5 \text{ mr}, dΩ = 0.25 \mu\text{Sr}, N_{LCS} = 2.76 \pm 0.02$$

Pileup energy distribution

 $g(E_{\gamma}) = \int f(E_{\gamma}) f(E_{\gamma} - E_{\gamma}) dE_{\gamma}$

$$\mathbf{n}(E_{\gamma}) = \iint \mathbf{f}(E_{\gamma}'') \, \mathbf{f}(E_{\gamma}' - E_{\gamma}'') \, \mathbf{f}(E_{\gamma} - E_{\gamma}') \, \mathbf{d} \, E_{\gamma}'' \, \mathbf{d} \, E_{\gamma}'''$$

$\tau_e = 5 \text{ ns}, \tau_L = 7 \text{ ns}, Q_{\text{macropulse}} = 0.2 \text{ nC}, \text{ laser, } E_L = 200 \text{ mJ}, \text{ Slit width} = 3.4 \text{ mm}$

LCS energy tunability

Time delay between laser and electron beam pulses

LCS as a non-invasive beam diagnostics technique: Angular measurements

• Scan across x-ray cone along horizontal and vertical directions.

Minimization method:

- Common fit to spectra to determine common e-beam Parameters from several responses *i.e.* spectra.
- Minimization of det $\{V_{i,j}\}$

$$\{\mathbf{V}_{i,j}\} = \sum_{k} \frac{(y_{i,k} - f_{i,k})}{\sigma_{i,k}} \frac{(y_{j,k} - f_{j,k})}{\sigma_{j,k}}$$

Measured beam parameters with minimization method

With 15 spectra: $E = 22.27 \pm 0.04 \text{ MeV}$ $\Delta E = 0.21 \pm 0.07 \text{ MeV}$ $\sigma_x = 2.08 \pm 0.13 \text{ mrad}$ $\sigma_y = 3.05 \pm 0.5 \text{ mrad}$ $\theta_b = -2.12 \pm 0.32 \text{ mrad}.$ With energy and FWHM (E and ΔE fixed) $\sigma_x = 2.23 \pm 0.11$ mrad $\sigma_y = 2.81 \pm 0.5$ mrad $\theta_b = -2.15 \pm 0.5$ mrad.

K. Chouffani *et al.* Laser Part. Beams 24, (2006) 411, Phys. Rev. Spec. Top. AB 9, 050701 (2006).

LCS Energy, FWHM VS Observation angle

LCS for non-proliferation → Hybrid K-edge densitometry (HKED)
 →Identifications and quantification (concentration/concentration ratio) of actinide elements in liquid samples.

(128.2 keV).

KED utilizes abrupt change in x-ray transmission at the k absorption edge of a certain heavy element in order to determine its concentration. XRF determines various ratios of concentrations (U/Pu). Measured ratios allow determination of each minor element relative to major elements and therefore after appropriate calibration allow determination of absolute concentration of a minor element.

Ottmar et al. Hybrid K-edge densitometry with bremsstrahlung beams: *150 kV/15 mA X-ray tube. *2 high purity Germanium detectors. *XRF detector at 150° with respect to primary direction of X-ray beam. Lots of useless photons and poor signal to noise ratio.

3 M Nitric acid solution (reference solution), Path length = 2 cm, Volume = 7ml, 1.08g/cm³ E beam energy =42.5 MeV, Laser energy = 3 mJ

Samples provided by Sandia National Laboratory

Concentration measurements

Polarized x-rays: XRF, Material science i.e. magnetic Compton scattering, x-ray magnetic dichroism (XMCD), xray diff optics.

Fixed detector position at 90° with respect to scatterer

Main goal:

1-Determination of detection
limit of actinide elements
concentration that can be
reached with LCS x-rays and
comparison with x-ray tubes
(1mg/l up to about 300 g/l).
2- U/Pu sample 200g/l-1g/l
3-TRU product

Bio-Medical Imaging

Production of high-quality images of soft

tissue while reducing dose.

Typical x-ray yield = 10^7 photons/cm² and $\Delta E \le 5\%$.

Conventional X-ray source

LCS X-ray beam image Off axis emission → Factor >4 loss in X-ray yield

Phase imaging (bottle cap)

Laser (1064 nm) spot size: σ≈180 μm (need tighter beam focus)

X-ray image of memory stick at X-ray energy ≈ 47 keV (532 nm). Dimensions = 1.5x3.5cm Total flux $\approx 1.2x10^5$ Ph/mm²

Spatial resolution ≈ 12 Lp/mm

Future goals

•Comparison of LCS and OTRI. OTRI: $\sigma \approx 0.01/\gamma$ Limitation: Low energy e-beams and high quality e- beams due to scattering in first foil.

• (x,x') e⁻ mapping

Single shot beam diagnostics with LCS

Conclusion

LCS can be a versatile x-ray source provided that one has the necessary yield!

LCS has a wide range of applications in accelerator physics,biomedical field, material sciences and non-proliferation.

LCS projects of interest at IAC:

*Proof of principle of single shot electron beam diagnostics, transverse phase space mapping and comparison of LCS to other developed diagnostic techniques such as ODTRI, R. Fiorito (UMD). *HKED with U/Pu, Dissolver solution (U/Pu/Np/Am/Cm) and TRU (Pu/Np/Am/Cm), M. Collins (LANL) and B. Cipiti (Sandia). *Image contrast/ X-ray dose VS LCS X-ray energy and bandwidth. *Phase/Absorption imaging: Low Z materials embedded in soft Tissue, E. Ritman (Mayo clinic), M. Gambaccini and A. Taibi, (Univ. of Ferrara, Italy).